salesforce THE CUSTOMER SUCCESS PLATFORM

HBase+Phoenix for OLTP

Andrew Purtell

Architect, Cloud Storage @ Salesforce

Apache HBase VP @ Apache Software Foundation
apurtell@salesforce.com

apurtell@apache.org

@akpurtell

vh

whoami

Architect, Cloud Storage at Salesforce.com

Open Source Contributor, since 2007
- Committer, PMC, and Project Chair, Apache HBase
+ Committer and PMC, Apache Phoenix

« Committer, PMC, and Project Chair, Apache Bigtop

+ Member, Apache Software Foundation

Distributed Systems Nerd, since 1997

salesforce

Agenda

http://riverlink.org/wp-content/uploads/2014/01/grab-bagl1.jpg

salesforce

HBase+Phoenix for OLTP

Common use case characteristics
Live operational information
Entity-relationship, one row per instance, attributes mapped to columns
Point queries or short range scans
Emphasis on update

Top concerns given these characteristics
Low per-operation latencies
Update throughput
Fast fail

Predictable performance

http://www.cn-vehicle.com/prodpic/2011-3-21-16-23-37.JPG

Low Per-Operation Latencies

Major latency contributors
Excessive work needed per query

Request queuing

JVM garbage collection Typical HBase 99%-ile latencies by operation
Network Streamed
Put Multiput Get Timeline get

Server outages

Steady milliseconds milliseconds milliseconds milliseconds
OS pagecache /| VMM [IO

Failure seconds seconds seconds milliseconds
10’s of 10’s of
GC milliseconds milliseconds milliseconds milliseconds

NOTE: Phoenix supports HBase’s timeline consistent gets as of version 4.4.0

salesforce

Limit The Work Needed Per Query

Avoid joins, unless one side is small, especially on frequent queries

Limit the number of indexes on frequently updated tables

Use covered indexes to convert table scans into efficient point lookups or range scans over the
Index table instead of the primary table

CREATE INDEX index ON table (...) INCLUDE (...)
Leading columns in the primary key constraint should be filtered in the WHERE clause
Especially the first leading column
IN or OR in WHERE enables skip scan optimizations
Equality or <, > in WHERE enables range scan optimizations
Let Phoenix optimize query parallelism using statistics

Automatic benefit if using Phoenix 4.2 or greater in production

salesforce

Tune HBase RegionServer RPC Handling

hbase.regionserver.handler.count (hbase-site)
Set to cores x spindles for concurrency

Optionally, split the call queues into separate read and write queues for differentiated service
hbase.ipc.server.callqueue.handler.factor

+ Factor to determine the number of call queues: O means a single shared queue, 1 means one queue for
each handler

hbase.ipc.server.callqueue.read.ratio (hbase.ipc.server.callqueue.read.share in 0.98)

« Split the call queues into read and write queues: 0.5 means there will be the same number of read and
write queues, < 0.5 for more read than write, > 0.5 for more write than read

hbase.ipc.server.callqueue.scan.ratio (HBase 1.0+)

+ Split read call queues into small-read and long-read queues: 0.5 means that there will be the same
number of short-read and long-read queues; < 0.5 for more short-read, > 0.5 for more long-read

salesforce

Tune JVM GC For Low Collection Latencies

Use the CMS collector
-XX:+UseConcMarkSweepGC

Keep eden space as small as possible to minimize average collection time. Optimize for low
collection latency rather than throughput.

-XX:+UseParNewGC - Collect eden in parallel
-Xmn512m - Small eden space
-XX:CMSInitiatingOccupancyFraction=70 - Avoid collection under pressure
-XX:+UseCMSInitiatingOccupancyOnly - Turn off some unhelpful ergonomics
Limit per request scanner result sizing so everything fits into survivor space but doesn’t tenure
hbase.client.scanner.max.result.size (in hbase-site.xml)
- Survivor space is 1/8t of eden space (with -Xmn512m this is ~51MB)

* max.result.size x handler.count < survivor space

Disable Nagle for RPC

Disable Nagle’s algorithm
TCP delayed acks can add up to ~200ms to RPC round trip time
In Hadoop’s core-site and HBase’s hbase-site
* ipc.servertcpnodelay = true
* ipc.client.tcpnodelay = true
In HBase’s hbase-site
* hbase.ipc.client.tcpnodelay = true

* hbase.ipc.server.tcpnodelay = true

Why are these not default? Good question

salesforce

Limit Impact Of Server Failures

Detect regionserver failure as fast as reasonable (hbase-site)

zookeeper.session.timeout <= 30 seconds - Bound failure detection within 30 seconds (20-30 is good)

Detect and avoid unhealthy or failed HDFS DataNodes (hdfs-site, hbase-site)

dfs.namenode.avoid.read.stale.datanode = true

dfs.namenode.avoid.write.stale.datanode = true

salesforce

Server Side Configuration Optimization for Low Latency

Skip the network if block is local (hbase-site)

dfs.client.read.shortcircuit = true

dfs.client.read.shortcircuit.buffer.size = 131072 - important to avoid OOME

Ensure data locality (hbase-site)

hbase.hstore.min.locality.to.skip.major.compact = 0.7 (0.7 <=n <= 1)

Make sure DataNodes have enough handlers for block transfers (hdfs-site)

dfs.datanode.max.xcievers >= 8192

dfs.datanode.handler.count - match number of spindles

Schema Considerations
Block Encoding

Use FAST_DIFF block encoding

CREATE TABLE .. (

) DATA BLOCK ENCODING=‘'FAST DIFF’

FAST_DIFF encoding is automatically enabled on all Phoenix tables by default

Almost always improves overall read latencies and throughput by allowing more data to fit into
blockcache

Note: Can increase garbage produced during request processing

salesforce

Schema Considerations
Salting

Use salting to avoid hotspotting

CREATE TABLE .. (

) SALT BUCKETS = N

Do not salt automatically. Use only when experiencing hotspotting

Once you need it, for optimal performance the number of salt buckets should approximately
equal the number of regionservers

salesforce

Schema Considerations
Primary key (row key) design

Primary key design is the single most important design criteria that drives performance

Make sure that what ever you're filtering on in your most common queries drives your primary key
constraint design

Filter against leading columns in the primary key constraint in the WHERE clause, especially the
first

Further advice is use case specific, suggest writing user@phoenix.apache.org with questions

salesforce

Optimize Writes For Throughput

Optimize UPSERT for throughput
UPSERT VALUES
 Batch by calling it multiple times before commit()
« Use PreparedStatement for cases where you're calling UPSERT VALUES again and again
UPSERT SELECT

+ Use connection.setAutoCommit(true), pipelines scan results out as writes without unnecessary
buffering

- If your rows are small, consider increasing phoenix.mutate.batchSize

* Number of rows batched together and automatically committed during UPSERT SELECT, default
1000

salesforce

Fast Fail

For applications where failing quickly is better than waiting

Phoenix query timeout (hbase-site, client side)
phoenix.query.timeoutMs - max tolerable wait time
HBase level client retry count and wait (hbase-site, client side)
hbase.client.pause = 1000
hbase.client.retries.number = 3
If you want to ride over splits and region moves, increase hbase.client.retries.number substantially (>= 20)
RecoverableZookeeper retry count and retry wait (hbase-site, client side)
zookeeper.recovery.retry = 1 (no retry)
ZK session timeout for detecting server failures (hbase-site, server side)

zookeeper.session.timeout <= 30 seconds (20-30 is good)

salesforce

Timeline Consistent Reads

For applications that can tolerate slightly out of date information

HBase timeline consistency (HBASE-10070)
With read replicas enabled, read-only copies of regions (replicas) are distributed over the cluster
One RegionServer services the default or primary replica, which is the only replica that can service writes

Other RegionServers serve the secondaries replicas, follow the primary RegionServer and only see
committed updates. The secondary replicas are read-only, but can serve reads immediately while the
primary is failing over, cutting read availability blips from ~seconds to ~milliseconds

Phoenix supports timeline consistency as of 4.4.0

1. Deploy HBase 1.0.0 or later

2. Enable timeline consistent replicas on the server side
3. ALTER SESSION SET CONSISTENCY = 'TIMELINE’

or set the connection property ‘Consistency’ to “timeline” in the JDBC connect string

or set ‘phoenix.connection.consistency’ = “timeline” in client hbase-site for all connections .
salesforce

OS Level Tuning For Predictable Performance

Turn transparent huge pages (THP) off
echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag
Set vm.swappiness = 0
Set vimn.min_free_kbytes to at least 1GB (8GB on larger memory systems)

Disable NUMA zone reclaim with vm.zone _reclaim_mode =0

EXPLAINiIng Predictable Performance SPANNY (e

upsertSelect

delete

Check the computed physical plan using EXPLAIN

Consider rewriting queries when:

Prefer operations on SERVER, not CLIENT
SERVER ops are distributed over the servers and execute in parallel
CLIENT ops execute within the single client JDBC driver
Consider tweaking your query to increase the use of SERVER side operations

Scanning strategy is TABLE SCAN, prefer RANGE SCAN or SKIP SCAN
Filter against leading columns in the primary key constraint, PK may need redesign
Possibly means you need to introduce a global index that covers your query or local index

If you have an index but the optimizer is missing it, try hinting the query (SELECT /*+ INDEX(<table> <index>) */ ...)
If using JOINs, please read https://phoenix.apache.org/joins.html

salesforce

What’s New?

Exciting new or upcoming features for OLTP use cases

Functional Indexes
Spark integration

Make RDDs or data frames out of fast Phoenix queries for Spark streaming and batch workflows

Transactions (WIP)

Using Tephra (http://tephra.io/), supports REPEATABLE_READ isolation level
Need to manage the Tephra Transaction Manager as a new system component
Work in progress, but close to release, try out the ‘txn’ branch

Calcite Integration for federated query (WIP)

Interoperate and federate queries over other Apache Calcite adopters (Drill, Hive, Samza, Kylin) and any
data source with Calcite driver support (Postgres, MySQL, etc.)

See the ‘calcite’ branch

salesforce

What’s New?

Exciting new or upcoming features for OLTP use cases

Query Server
Builds on Calcite’s Avatica framework for thin JDBC drivers

Offloads query planning and execution to different server(s) - The “fat” parts of the Phoenix JDBC driver
become hosted on a middle tier, enablig scaling independent from clients and HBase

Shipping now in 4.5+
Still evolving, so no backward compatibility guarantees yet

A more efficient wire protocol based on protobufs is WIP

salesforce

salesforce Thank you
Q&A

apurtell@salesforce.com
apurtell@apache.org
@akpurtell

