
HBase+Phoenix for OLTP

​ Andrew Purtell
​ Architect, Cloud Storage @ Salesforce
​ Apache HBase VP @ Apache Software Foundation
apurtell@salesforce.com
apurtell@apache.org
​ @akpurtell
​ 

v4

​ Architect, Cloud Storage at Salesforce.com

​ 
Open Source Contributor, since 2007

•  Committer, PMC, and Project Chair, Apache HBase

•  Committer and PMC, Apache Phoenix

•  Committer, PMC, and Project Chair, Apache Bigtop

•  Member, Apache Software Foundation

Distributed Systems Nerd, since 1997

whoami

Agenda

http://riverlink.org/wp-content/uploads/2014/01/grab-bag11.jpg

​ Common use case characteristics

​  Live operational information

​  Entity-relationship, one row per instance, attributes mapped to columns

​  Point queries or short range scans

​  Emphasis on update

​ Top concerns given these characteristics

​  Low per-operation latencies

​  Update throughput

​  Fast fail

​  Predictable performance

HBase+Phoenix for OLTP

http://www.cn-vehicle.com/prodpic/2011-3-21-16-23-37.JPG

​ Major latency contributors

​  Excessive work needed per query

​  Request queuing

​  JVM garbage collection

​  Network

​  Server outages

​  OS pagecache / VMM / IO

Low Per-Operation Latencies

Typical HBase 99%-ile latencies by operation

NOTE: Phoenix supports HBase’s timeline consistent gets as of version 4.4.0

​ Avoid joins, unless one side is small, especially on frequent queries

​ Limit the number of indexes on frequently updated tables

​ Use covered indexes to convert table scans into efficient point lookups or range scans over the
index table instead of the primary table

​  CREATE INDEX index ON table (…) INCLUDE (…)

​ Leading columns in the primary key constraint should be filtered in the WHERE clause

​  Especially the first leading column

​  IN or OR in WHERE enables skip scan optimizations

​  Equality or <, > in WHERE enables range scan optimizations

Let Phoenix optimize query parallelism using statistics

​  Automatic benefit if using Phoenix 4.2 or greater in production

Limit The Work Needed Per Query

hbase.regionserver.handler.count (hbase-site)

​  Set to cores x spindles for concurrency

Optionally, split the call queues into separate read and write queues for differentiated service

​  hbase.ipc.server.callqueue.handler.factor

•  Factor to determine the number of call queues: 0 means a single shared queue, 1 means one queue for
each handler

​  hbase.ipc.server.callqueue.read.ratio (hbase.ipc.server.callqueue.read.share in 0.98)

•  Split the call queues into read and write queues: 0.5 means there will be the same number of read and
write queues, < 0.5 for more read than write, > 0.5 for more write than read

​  hbase.ipc.server.callqueue.scan.ratio (HBase 1.0+)

•  Split read call queues into small-read and long-read queues: 0.5 means that there will be the same
number of short-read and long-read queues; < 0.5 for more short-read, > 0.5 for more long-read

Tune HBase RegionServer RPC Handling

Use the CMS collector

​  -XX:+UseConcMarkSweepGC

​ Keep eden space as small as possible to minimize average collection time. Optimize for low
collection latency rather than throughput.

​  -XX:+UseParNewGC – Collect eden in parallel

​  -Xmn512m – Small eden space

​  -XX:CMSInitiatingOccupancyFraction=70 – Avoid collection under pressure

​  -XX:+UseCMSInitiatingOccupancyOnly – Turn off some unhelpful ergonomics

Limit per request scanner result sizing so everything fits into survivor space but doesn’t tenure

​  hbase.client.scanner.max.result.size (in hbase-site.xml)

•  Survivor space is 1/8th of eden space (with -Xmn512m this is ~51MB)

•  max.result.size x handler.count < survivor space

Tune JVM GC For Low Collection Latencies

​ Disable Nagle’s algorithm

​  TCP delayed acks can add up to ~200ms to RPC round trip time

​  In Hadoop’s core-site and HBase’s hbase-site

•  ipc.server.tcpnodelay = true

•  ipc.client.tcpnodelay = true

​  In HBase’s hbase-site

•  hbase.ipc.client.tcpnodelay = true

•  hbase.ipc.server.tcpnodelay = true

​  Why are these not default? Good question

Disable Nagle for RPC

​ Detect regionserver failure as fast as reasonable (hbase-site)

​  zookeeper.session.timeout <= 30 seconds – Bound failure detection within 30 seconds (20-30 is good)

​ Detect and avoid unhealthy or failed HDFS DataNodes (hdfs-site, hbase-site)

​  dfs.namenode.avoid.read.stale.datanode = true

​  dfs.namenode.avoid.write.stale.datanode = true

Limit Impact Of Server Failures

Skip the network if block is local (hbase-site)

​  dfs.client.read.shortcircuit = true

​  dfs.client.read.shortcircuit.buffer.size = 131072 – important to avoid OOME

​ Ensure data locality (hbase-site)

​  hbase.hstore.min.locality.to.skip.major.compact = 0.7 (0.7 <= n <= 1)

​ Make sure DataNodes have enough handlers for block transfers (hdfs-site)

​  dfs.datanode.max.xcievers >= 8192

​  dfs.datanode.handler.count – match number of spindles

Server Side Configuration Optimization for Low Latency

Use FAST_DIFF block encoding

​  CREATE TABLE … (
​  …
​ ) DATA_BLOCK_ENCODING=‘FAST_DIFF’

​  FAST_DIFF encoding is automatically enabled on all Phoenix tables by default

​  Almost always improves overall read latencies and throughput by allowing more data to fit into
blockcache

​  Note: Can increase garbage produced during request processing

Schema Considerations
Block Encoding

Use salting to avoid hotspotting

​  CREATE TABLE … (
​  …
​ ) SALT_BUCKETS = N

​  Do not salt automatically. Use only when experiencing hotspotting

​  Once you need it, for optimal performance the number of salt buckets should approximately
equal the number of regionservers

Schema Considerations
Salting

​ Primary key design is the single most important design criteria that drives performance

​ Make sure that what ever you're filtering on in your most common queries drives your primary key
constraint design

​ Filter against leading columns in the primary key constraint in the WHERE clause, especially the
first

​ Further advice is use case specific, suggest writing user@phoenix.apache.org with questions

Schema Considerations
Primary key (row key) design

​ Optimize UPSERT for throughput

​  UPSERT VALUES

•  Batch by calling it multiple times before commit()

•  Use PreparedStatement for cases where you're calling UPSERT VALUES again and again

​  UPSERT SELECT

•  Use connection.setAutoCommit(true), pipelines scan results out as writes without unnecessary
buffering

•  If your rows are small, consider increasing phoenix.mutate.batchSize

•  Number of rows batched together and automatically committed during UPSERT SELECT, default
1000

Optimize Writes For Throughput

Phoenix query timeout (hbase-site, client side)

​  phoenix.query.timeoutMs – max tolerable wait time

HBase level client retry count and wait (hbase-site, client side)

​  hbase.client.pause = 1000

​  hbase.client.retries.number = 3

​  If you want to ride over splits and region moves, increase hbase.client.retries.number substantially (>= 20)

​ RecoverableZookeeper retry count and retry wait (hbase-site, client side)

​  zookeeper.recovery.retry = 1 (no retry)

​ ZK session timeout for detecting server failures (hbase-site, server side)

​  zookeeper.session.timeout <= 30 seconds (20-30 is good)

Fast Fail
For applications where failing quickly is better than waiting

HBase timeline consistency (HBASE-10070)

​  With read replicas enabled, read-only copies of regions (replicas) are distributed over the cluster

​  One RegionServer services the default or primary replica, which is the only replica that can service writes

​  Other RegionServers serve the secondaries replicas, follow the primary RegionServer and only see
committed updates. The secondary replicas are read-only, but can serve reads immediately while the
primary is failing over, cutting read availability blips from ~seconds to ~milliseconds

Phoenix supports timeline consistency as of 4.4.0

1.  Deploy HBase 1.0.0 or later

2.  Enable timeline consistent replicas on the server side

3.  ALTER SESSION SET CONSISTENCY = 'TIMELINE’

 or set the connection property ‘Consistency’ to “timeline” in the JDBC connect string

 or set ‘phoenix.connection.consistency’ = “timeline” in client hbase-site for all connections

Timeline Consistent Reads
For applications that can tolerate slightly out of date information

​ Turn transparent huge pages (THP) off

​  echo never > /sys/kernel/mm/transparent_hugepage/enabled

​  echo never > /sys/kernel/mm/transparent_hugepage/defrag

​ Set vm.swappiness = 0

​ Set vm.min_free_kbytes to at least 1GB (8GB on larger memory systems)

​ Disable NUMA zone reclaim with vm.zone_reclaim_mode = 0

OS Level Tuning For Predictable Performance

​ Check the computed physical plan using EXPLAIN

​ Consider rewriting queries when:

​  Prefer operations on SERVER, not CLIENT

•  SERVER ops are distributed over the servers and execute in parallel

•  CLIENT ops execute within the single client JDBC driver

•  Consider tweaking your query to increase the use of SERVER side operations

​  Scanning strategy is TABLE SCAN, prefer RANGE SCAN or SKIP SCAN

•  Filter against leading columns in the primary key constraint, PK may need redesign

•  Possibly means you need to introduce a global index that covers your query or local index

•  If you have an index but the optimizer is missing it, try hinting the query (SELECT /*+ INDEX(<table> <index>) */ …)

If using JOINs, please read https://phoenix.apache.org/joins.html

EXPLAINing Predictable Performance

​ Functional Indexes

​ Spark integration

​  Make RDDs or data frames out of fast Phoenix queries for Spark streaming and batch workflows

Transactions (WIP)

​  Using Tephra (http://tephra.io/), supports REPEATABLE_READ isolation level

​  Need to manage the Tephra Transaction Manager as a new system component

​  Work in progress, but close to release, try out the ‘txn’ branch

Calcite Integration for federated query (WIP)

​  Interoperate and federate queries over other Apache Calcite adopters (Drill, Hive, Samza, Kylin) and any
data source with Calcite driver support (Postgres, MySQL, etc.)

​  See the ‘calcite’ branch

What’s New?
Exciting new or upcoming features for OLTP use cases

​ Query Server

​  Builds on Calcite’s Avatica framework for thin JDBC drivers

​  Offloads query planning and execution to different server(s) – The “fat” parts of the Phoenix JDBC driver
become hosted on a middle tier, enablig scaling independent from clients and HBase

​  Shipping now in 4.5+

​  Still evolving, so no backward compatibility guarantees yet

​  A more efficient wire protocol based on protobufs is WIP

What’s New?
Exciting new or upcoming features for OLTP use cases

Thank you

apurtell@salesforce.com
apurtell@apache.org
@akpurtell

Q&A

