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We put the SQL back in NoSQL 
https://github.com/forcedotcom/phoenix 
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l What/why Phoenix? 
l How does Phoenix work? 
l Demo 
l Roadmap 
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What is HBase? 

Completed 

l Developed as part of Apache Hadoop 
l Runs on top of HDFS  
l Key/value store 

Map Sorted 

Distributed Consistent 

Sparse Multidimensional 



Cluster Architecture 



Sharding 
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l If you have lots of data 
l Scales linearly 
l Shards automatically 

l If you can live without transactions 
l If your data changes 
l If you need strict consistency 
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What is Phoenix? 

Completed 

l SQL skin for HBase 
l Alternate client API 
l Embedded JDBC driver 
l Runs at HBase native speed 
l Compiles SQL into native HBase calls 
l So you don’t have to!  
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l Give folks an API they already know 
l Reduce the amount of code needed 

SELECT TRUNC(date,'DAY’), AVG(cpu) 
FROM web_stat 
WHERE domain LIKE 'Salesforce%’ 
GROUP BY TRUNC(date,'DAY’) 
 



Why Use Phoenix? 

Completed 

l Give folks an API they already know 
l Reduce the amount of code needed 
l Perform optimizations transparently 



Why Use Phoenix? 

Completed 

l Give folks an API they already know 
l Reduce the amount of code needed 
l Perform optimizations transparently 

l Aggregation 
l Skip Scan 
l Secondary indexing (soon!) 
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Why Use Phoenix? 

Completed 

l Give folks an API they already know 
l Reduce the amount of code needed 
l Perform optimizations transparently 
l Leverage existing tooling 

l SQL client/terminal 
l OLAP engine 



How Does Phoenix Work? 

Completed 

l Overlays on top of HBase Data Model 
l Keeps Versioned Schema Respository 
l Query Processor 
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Phoenix Data Model 

HBase Table 
Column Family A  Column Family B  

Qualifier 1 Qualifier 2 Qualifier 3 
Row Key 1 Value 

Row Key 2 Value Value 

Row Key 3 Value 

Phoenix maps HBase data model to the relational world 
 Phoenix Table 

Key Value Columns Row Key Columns 
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l  CREATE TABLE 
l  ALTER TABLE 
l  DROP TABLE 
l  CREATE INDEX 
l  DROP INDEX 
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Phoenix Metadata 

Completed 

l  Stored in a Phoenix HBase table 
l  Updated through DDL commands 
l  Keeps older versions as schema evolves 
l  Correlates timestamps between schema and data 
l  Accessible via JDBC metadata APIs 

l  java.sql.DatabaseMetaData 
l  Through Phoenix queries! 
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SERVER METRICS 

HOST VARCHAR 
DATE DATE 
RESPONSE_TIME INTEGER 
GC_TIME INTEGER 
CPU_TIME INTEGER 
IO_TIME INTEGER 
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Over metrics data for clusters of servers with a schema like this: 
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Over metrics data for clusters of servers with a schema like this: 
 

Key Values 

SERVER METRICS 

HOST VARCHAR 
DATE DATE 
RESPONSE_TIME INTEGER 
GC_TIME INTEGER 
CPU_TIME INTEGER 
IO_TIME INTEGER 
… 



With 90 days of data that looks like this: 

SERVER METRICS 
HOST DATE RESPONSE_TIME GC_TIME 

sf1.s1 Jun 5 10:10:10.234 1234 
sf1.s1 Jun 5 11:18:28.456 8012 
… 
sf3.s1 Jun 5 10:10:10.234 2345 
sf3.s1 Jun 6 12:46:19.123 2340 
sf7.s9 Jun 4 08:23:23.456 5002 1234 
… 

Example 
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Example 
Walk through query processing for three scenarios 

1.  Chart Response Time Per Cluster 

2.  Identify 5 Longest GC Times 

3.  Identify 5 Longest GC Times again and again 
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Step 1: Client 
Identify Row Key Ranges from Query 

Completed 

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time) 
FROM server_metrics 
WHERE date > CURRENT_DATE() – 7 
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’) 
GROUP BY substr(host, 1, 3), trunc(date,’DAY’) 
 

Row Key Ranges 
HOST DATE 
sf1 t1 - * 
sf3 
sf7 



Step 2: Client 
Overlay Row Key Ranges with Regions 

Completed 

R1 

R2 

R3 

R4 

sf1 

sf4 

sf6 

sf1 
sf3 

sf7 



Step 3: Client 
Execute Parallel Scans 

Completed 

R1 

R2 

R3 

R4 

sf1 

sf4 

sf6 

sf1 

sf3 

sf7 

scan1 

scan3 

scan2 
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Step 4: Server 
Filter using Skip Scan 

Completed 
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Step 4: Server 
Filter using Skip Scan 

sf1.s3  t0 SKIP 



Step 4: Server 
Filter using Skip Scan 

sf1.s3  t1 INCLUDE 



SERVER METRICS 
HOST DATE 
sf1.s1 Jun 2 10:10:10.234 
sf1.s2 Jun 3 23:05:44.975 
sf1.s2 Jun 9 08:10:32.147 
sf1.s3 Jun 1 11:18:28.456 
sf1.s3 Jun 3 22:03:22.142 
sf1.s4 Jun 1 10:29:58.950 
sf1.s4 Jun 2 14:55:34.104 
sf1.s4 Jun 3 12:46:19.123 
sf1.s5 Jun 8 08:23:23.456 
sf1.s6 Jun 1 10:31:10.234 

Step 5: Server 
Intercept Scan in Coprocessor 

SERVER METRICS 
HOST DATE AGG 
sf1 Jun 1 … 
sf1 Jun 2 … 
sf1 Jun 3 … 
sf1 Jun 8 … 
sf1 Jun 9 … 



Step 6: Client 
Perform Final Merge Sort 

Completed 

R1 

R2 

R3 

R4 

scan1 

scan3 

scan2 

SERVER METRICS 
HOST DATE AGG 
sf1 Jun 5 … 
sf1 Jun 9 … 
sf3 Jun 1 … 
sf3 Jun 2 … 
sf7 Jun 1 … 
sf7 Jun 8 … 



Scenario 2 
Find 5 Longest GC Times 

Completed 

SELECT host, date, gc_time 
FROM server_metrics 
WHERE date > CURRENT_DATE() – 7 
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’) 
ORDER BY gc_time DESC 
LIMIT 5 
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SERVER METRICS 
HOST DATE GC_TIME 
sf1.s1 Jun 2 10:10:10.234 22123 

sf1.s1 Jun 3 23:05:44.975 19876 

sf1.s1 Jun 9 08:10:32.147 11345 

sf1.s2 Jun 1 11:18:28.456 10234 

sf1.s2 Jun 3 22:03:22.142 10111 

Scenario 2 
Find 5 Longest GC Times 

•  Same client parallelization and server skip scan filtering 
•  Server holds 5 longest GC_TIME value for each scan 
•  Client performs final merge sort among parallel scans 

Scan1 

Scan2 

Scan3 
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Scenario 3 
Find 5 Longest GC Times 

Completed 

CREATE INDEX gc_time_index 
ON server_metrics (gc_time DESC, date DESC) 
INCLUDE (host, response_time) 

Row Key 

GC_TIME_INDEX 
GC_TIME INTEGER 
DATE DATE 
HOST VARCHAR 
RESPONSE_TIME INTEGER 



Scenario 3 
Find 5 Longest GC Times 

Completed 

CREATE INDEX gc_time_index 
ON server_metrics (gc_time DESC, date DESC) 
INCLUDE (host, response_time) 

Key Value 

GC_TIME_INDEX 
GC_TIME INTEGER 
DATE DATE 
HOST VARCHAR 
RESPONSE_TIME INTEGER 



Scenario 3 
Find 5 Longest GC Times 

Completed 

SELECT host, date, gc_time 
FROM server_metrics 
WHERE date > CURRENT_DATE() – 7 
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’) 
ORDER BY gc_time DESC 
LIMIT 5 



Demo 

Completed 

l Phoenix Stock Analyzer 
l Fortune 500 companies 
l 10 years of historical stock prices 
l Demonstrates Skip Scan in action 
l Running locally on my single node 
laptop cluster 



Phoenix Roadmap 

Completed 

l  Secondary Indexing 
l  Count distinct and percentile 
l  Derived tables 
l  Hash Joins 
l  Apache Drill integration 
l  Cost-based query optimizer 
l  OLAP extensions 
l  Transactions  



Thank you! 
Questions/comments? 


