
Phoenix

James Taylor
@JamesPlusPlus
http://phoenix-hbase.blogspot.com/

We put the SQL back in NoSQL
https://github.com/forcedotcom/phoenix

Agenda

Completed

l What/why HBase?

Agenda

Completed

l What/why HBase?
l What/why Phoenix?

Agenda

Completed

l What/why HBase?
l What/why Phoenix?
l How does Phoenix work?

Agenda

Completed

l What/why HBase?
l What/why Phoenix?
l How does Phoenix work?
l Demo

Agenda

Completed

l What/why HBase?
l What/why Phoenix?
l How does Phoenix work?
l Demo
l Roadmap

Agenda

Completed

l What/why HBase?
l What/why Phoenix?
l How does Phoenix work?
l Demo
l Roadmap
l Q&A

What is HBase?

Completed

l Developed as part of Apache Hadoop

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map

Distributed

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map

Distributed

Sparse

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map Sorted

Distributed

Sparse

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map Sorted

Distributed Consistent

Sparse

What is HBase?

Completed

l Developed as part of Apache Hadoop
l Runs on top of HDFS
l Key/value store

Map Sorted

Distributed Consistent

Sparse Multidimensional

Cluster Architecture

Sharding

Why Use HBase?

Completed

l If you have lots of data

Why Use HBase?

Completed

l If you have lots of data
l Scales linearly

Why Use HBase?

Completed

l If you have lots of data
l Scales linearly
l Shards automatically

Why Use HBase?

Completed

l If you have lots of data
l Scales linearly
l Shards automatically

l If you can live without transactions

Why Use HBase?

Completed

l If you have lots of data
l Scales linearly
l Shards automatically

l If you can live without transactions
l If your data changes

Why Use HBase?

Completed

l If you have lots of data
l Scales linearly
l Shards automatically

l If you can live without transactions
l If your data changes
l If you need strict consistency

What is Phoenix?

Completed

What is Phoenix?

Completed

l SQL skin for HBase

What is Phoenix?

Completed

l SQL skin for HBase
l Alternate client API

What is Phoenix?

Completed

l SQL skin for HBase
l Alternate client API
l Embedded JDBC driver

What is Phoenix?

Completed

l SQL skin for HBase
l Alternate client API
l Embedded JDBC driver
l Runs at HBase native speed

What is Phoenix?

Completed

l SQL skin for HBase
l Alternate client API
l Embedded JDBC driver
l Runs at HBase native speed
l Compiles SQL into native HBase calls

What is Phoenix?

Completed

l SQL skin for HBase
l Alternate client API
l Embedded JDBC driver
l Runs at HBase native speed
l Compiles SQL into native HBase calls
l So you don’t have to!

Cluster Architecture

Cluster Architecture

Phoenix

Cluster Architecture

Phoenix

Phoenix

Phoenix Performance

Why Use Phoenix?

Why Use Phoenix?

Completed

l Give folks an API they already know

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed

SELECT TRUNC(date,'DAY’), AVG(cpu)
FROM web_stat
WHERE domain LIKE 'Salesforce%’
GROUP BY TRUNC(date,'DAY’)

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed
l Perform optimizations transparently

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed
l Perform optimizations transparently

l Aggregation
l Skip Scan
l Secondary indexing (soon!)

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed
l Perform optimizations transparently
l Leverage existing tooling

Why Use Phoenix?

Completed

l Give folks an API they already know
l Reduce the amount of code needed
l Perform optimizations transparently
l Leverage existing tooling

l SQL client/terminal
l OLAP engine

How Does Phoenix Work?

Completed

l Overlays on top of HBase Data Model
l Keeps Versioned Schema Respository
l Query Processor

Phoenix Data Model

HBase Table

Phoenix maps HBase data model to the relational world

Phoenix Data Model

HBase Table
Column Family A Column Family B

Phoenix maps HBase data model to the relational world

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3

Phoenix maps HBase data model to the relational world

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Phoenix maps HBase data model to the relational world

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Phoenix maps HBase data model to the relational world

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world

Multiple Versions

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world
 Phoenix Table

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world
 Phoenix Table

Key Value Columns

Phoenix Data Model

HBase Table
Column Family A Column Family B

Qualifier 1 Qualifier 2 Qualifier 3
Row Key 1 Value

Row Key 2 Value Value

Row Key 3 Value

Phoenix maps HBase data model to the relational world
 Phoenix Table

Key Value Columns Row Key Columns

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  SYSTEM.TABLE

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands

l  CREATE TABLE
l  ALTER TABLE
l  DROP TABLE
l  CREATE INDEX
l  DROP INDEX

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands
l  Keeps older versions as schema evolves

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands
l  Keeps older versions as schema evolves
l  Correlates timestamps between schema and data

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands
l  Keeps older versions as schema evolves
l  Correlates timestamps between schema and data

l  Flashback queries use schema that was in-place then

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands
l  Keeps older versions as schema evolves
l  Correlates timestamps between schema and data
l  Accessible via JDBC metadata APIs

Phoenix Metadata

Completed

l  Stored in a Phoenix HBase table
l  Updated through DDL commands
l  Keeps older versions as schema evolves
l  Correlates timestamps between schema and data
l  Accessible via JDBC metadata APIs

l  java.sql.DatabaseMetaData
l  Through Phoenix queries!

Example

Row Key

SERVER METRICS

HOST VARCHAR
DATE DATE
RESPONSE_TIME INTEGER
GC_TIME INTEGER
CPU_TIME INTEGER
IO_TIME INTEGER
…

Over metrics data for clusters of servers with a schema like this:

Example
Over metrics data for clusters of servers with a schema like this:

Key Values

SERVER METRICS

HOST VARCHAR
DATE DATE
RESPONSE_TIME INTEGER
GC_TIME INTEGER
CPU_TIME INTEGER
IO_TIME INTEGER
…

With 90 days of data that looks like this:

SERVER METRICS
HOST DATE RESPONSE_TIME GC_TIME

sf1.s1 Jun 5 10:10:10.234 1234
sf1.s1 Jun 5 11:18:28.456 8012
…
sf3.s1 Jun 5 10:10:10.234 2345
sf3.s1 Jun 6 12:46:19.123 2340
sf7.s9 Jun 4 08:23:23.456 5002 1234
…

Example

Example
Walk through query processing for three scenarios

Example
Walk through query processing for three scenarios

1.  Chart Response Time Per Cluster

Example
Walk through query processing for three scenarios

1.  Chart Response Time Per Cluster

2.  Identify 5 Longest GC Times

Example
Walk through query processing for three scenarios

1.  Chart Response Time Per Cluster

2.  Identify 5 Longest GC Times

3.  Identify 5 Longest GC Times again and again

Scenario 1
Chart Response Time Per Cluster

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Scenario 1
Chart Response Time Per Cluster

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Scenario 1
Chart Response Time Per Cluster

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Scenario 1
Chart Response Time Per Cluster

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Scenario 1
Chart Response Time Per Cluster

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE
sf1

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE
sf1
sf3

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE
sf1
sf3
sf7

Step 1: Client
Identify Row Key Ranges from Query

Completed

SELECT substr(host,1,3), trunc(date,’DAY’), avg(response_time)
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3’, ‘sf7’)
GROUP BY substr(host, 1, 3), trunc(date,’DAY’)

Row Key Ranges
HOST DATE
sf1 t1 - *
sf3
sf7

Step 2: Client
Overlay Row Key Ranges with Regions

Completed

R1

R2

R3

R4

sf1

sf4

sf6

sf1
sf3

sf7

Step 3: Client
Execute Parallel Scans

Completed

R1

R2

R3

R4

sf1

sf4

sf6

sf1

sf3

sf7

scan1

scan3

scan2

Step 4: Server
Filter using Skip Scan

Completed

sf1.s1 t0 SKIP

Step 4: Server
Filter using Skip Scan

Completed

sf1.s1 t1 INCLUDE

Step 4: Server
Filter using Skip Scan

Completed

sf1.s2 t0 SKIP

Step 4: Server
Filter using Skip Scan

Completed
sf1.s2 t1 INCLUDE

Step 4: Server
Filter using Skip Scan

sf1.s3 t0 SKIP

Step 4: Server
Filter using Skip Scan

sf1.s3 t1 INCLUDE

SERVER METRICS
HOST DATE
sf1.s1 Jun 2 10:10:10.234
sf1.s2 Jun 3 23:05:44.975
sf1.s2 Jun 9 08:10:32.147
sf1.s3 Jun 1 11:18:28.456
sf1.s3 Jun 3 22:03:22.142
sf1.s4 Jun 1 10:29:58.950
sf1.s4 Jun 2 14:55:34.104
sf1.s4 Jun 3 12:46:19.123
sf1.s5 Jun 8 08:23:23.456
sf1.s6 Jun 1 10:31:10.234

Step 5: Server
Intercept Scan in Coprocessor

SERVER METRICS
HOST DATE AGG
sf1 Jun 1 …
sf1 Jun 2 …
sf1 Jun 3 …
sf1 Jun 8 …
sf1 Jun 9 …

Step 6: Client
Perform Final Merge Sort

Completed

R1

R2

R3

R4

scan1

scan3

scan2

SERVER METRICS
HOST DATE AGG
sf1 Jun 5 …
sf1 Jun 9 …
sf3 Jun 1 …
sf3 Jun 2 …
sf7 Jun 1 …
sf7 Jun 8 …

Scenario 2
Find 5 Longest GC Times

Completed

SELECT host, date, gc_time
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
ORDER BY gc_time DESC
LIMIT 5

Scenario 2
Find 5 Longest GC Times

•  Same client parallelization and server skip scan filtering

Scenario 2
Find 5 Longest GC Times

Completed

•  Same client parallelization and server skip scan filtering
•  Server holds 5 longest GC_TIME value for each scan

R1

SERVER METRICS
HOST DATE GC_TIME
sf1.s1 Jun 2 10:10:10.234 22123

sf1.s1 Jun 3 23:05:44.975 19876

sf1.s1 Jun 9 08:10:32.147 11345

sf1.s2 Jun 1 11:18:28.456 10234

sf1.s2 Jun 3 22:03:22.142 10111

SERVER METRICS
HOST DATE GC_TIME
sf1.s1 Jun 2 10:10:10.234 22123

sf1.s1 Jun 3 23:05:44.975 19876

sf1.s1 Jun 9 08:10:32.147 11345

sf1.s2 Jun 1 11:18:28.456 10234

sf1.s2 Jun 3 22:03:22.142 10111

Scenario 2
Find 5 Longest GC Times

•  Same client parallelization and server skip scan filtering
•  Server holds 5 longest GC_TIME value for each scan
•  Client performs final merge sort among parallel scans

Scan1

Scan2

Scan3

Scenario 3
Find 5 Longest GC Times

Completed

CREATE INDEX gc_time_index
ON server_metrics (gc_time DESC, date DESC)
INCLUDE (host, response_time)

Scenario 3
Find 5 Longest GC Times

Completed

CREATE INDEX gc_time_index
ON server_metrics (gc_time DESC, date DESC)
INCLUDE (host, response_time)

Scenario 3
Find 5 Longest GC Times

Completed

CREATE INDEX gc_time_index
ON server_metrics (gc_time DESC, date DESC)
INCLUDE (host, response_time)

Scenario 3
Find 5 Longest GC Times

Completed

CREATE INDEX gc_time_index
ON server_metrics (gc_time DESC, date DESC)
INCLUDE (host, response_time)

Row Key

GC_TIME_INDEX
GC_TIME INTEGER
DATE DATE
HOST VARCHAR
RESPONSE_TIME INTEGER

Scenario 3
Find 5 Longest GC Times

Completed

CREATE INDEX gc_time_index
ON server_metrics (gc_time DESC, date DESC)
INCLUDE (host, response_time)

Key Value

GC_TIME_INDEX
GC_TIME INTEGER
DATE DATE
HOST VARCHAR
RESPONSE_TIME INTEGER

Scenario 3
Find 5 Longest GC Times

Completed

SELECT host, date, gc_time
FROM server_metrics
WHERE date > CURRENT_DATE() – 7
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’)
ORDER BY gc_time DESC
LIMIT 5

Demo

Completed

l Phoenix Stock Analyzer
l Fortune 500 companies
l 10 years of historical stock prices
l Demonstrates Skip Scan in action
l Running locally on my single node
laptop cluster

Phoenix Roadmap

Completed

l  Secondary Indexing
l  Count distinct and percentile
l  Derived tables
l  Hash Joins
l  Apache Drill integration
l  Cost-based query optimizer
l  OLAP extensions
l  Transactions

Thank you!
Questions/comments?

