
Phoenix 
James Taylor 
jtaylor@salesforce.com 

We put the SQL back in NoSQL 



In the dawn of time… 

Completed 



Relational Databases were invented 

Completed 



But we all know the problems folks ran into 

Completed 



And then there was HBase 

Completed 



And it was good 

Completed 

1.  Horizontally scalable 



And it was good 

Completed 

1.  Horizontally scalable 
2.  Maintains data locality 



And it was good 

Completed 

1.  Horizontally scalable 
2.  Maintains data locality 
3.  Runs on commodity hardware 



But somewhere,  
something terrible went wrong  

Completed 



But somewhere,  
something terrible went wrong  

Completed 

1.  It takes too much expertise 
to write an application 



But somewhere,  
something terrible went wrong  

Completed 

1.  It takes too much expertise 
to write an application 

2.  It takes too much code to do 
anything 



But somewhere,  
something terrible went wrong  

Completed 

1.  It takes too much expertise 
to write an application 

2.  It takes too much code to do 
anything 

3.  Your application is tied too 
closely with your data model 



What is Phoenix? 

Completed 

l  SQL skin for HBase 



What is Phoenix? 

Completed 

l  SQL skin for HBase 
l  An alternate client API 



What is Phoenix? 

Completed 

l  SQL skin for HBase 
l  An alternate client API 
l  An embedded JDBC driver that allows you 

to run at HBase native speed 



What is Phoenix? 

Completed 

l  SQL skin for HBase 
l  An alternate client API 
l  An embedded JDBC driver that allows you 

to run at HBase native speed 
l  Compiles your SQL into native HBase calls 



What is Phoenix? 

Completed 

l  SQL skin for HBase 
l  An alternate client API 
l  An embedded JDBC driver that allows you 

to run at HBase native speed 
l  Compiles your SQL into native HBase calls 
so you don’t have to!  



Phoenix Performance 



Why SQL for HBase? 

Completed 

l  Broaden HBase adoption 
l  Give folks an API they already know 



Why SQL for HBase? 

Completed 

l  Broaden HBase adoption 
l  Give folks an API they already know 

l  Reduce the amount of code users need to write 
SELECT TRUNC(date,'DAY’), AVG(cpu_usage) 
FROM web_stat 
WHERE domain LIKE 'Salesforce%’ 
GROUP BY TRUNC(date,'DAY’) 



Why SQL for HBase? 

Completed 

l  Broaden HBase adoption 
l  Give folks an API they already know 

l  Reduce the amount of code users need to write 
SELECT TRUNC(date,'DAY’), AVG(cpu_usage) 
FROM web_stat 
WHERE domain LIKE 'Salesforce%’ 
GROUP BY TRUNC(date,'DAY') 

l  Performance optimizations transparent to the user 
l  Aggregation 
l  Skip Scan 
l  Secondary indexing (soon!) 



Why SQL for HBase? 

Completed 

l  Broaden HBase adoption 
l  Give folks an API they already know 

l  Reduce the amount of code users need to write 
SELECT TRUNC(date,'DAY’), AVG(cpu_usage) 
FROM web_stat 
WHERE domain LIKE 'Salesforce%’ 
GROUP BY TRUNC(date,'DAY') 

l  Performance optimizations transparent to the user 
l  Aggregation 
l  Skip Scan 
l  Secondary indexing (soon!) 

l  Leverage existing tooling 
l  SQL client/terminal 
l  OLAP engine 



Query Processing 

Row Key 

Server Metrics 
HOST VARCHAR 

DATE DATE 

RESPONSE_TIME INTEGER 

GC_TIME INTEGER 

CPU_TIME INTEGER 

IO_TIME INTEGER 

… 

Over metrics data for clusters of servers with a schema like this: 
 



Query Processing 
With data that looks like this: 

SERVER METRICS 
HOST DATE RESPONSE_TIME GC_TIME 
ny1-s1 Jun 5 10:10:10.234 1234 
ny1-s1 Jun 5 11:18:28.456 4560 
… 
sf1-s1 Jun 5 10:10:10.234 2345 
sf1-s1 Jun 6 12:46:19.123 1003 
sf7-s20 Jun 4 08:23:23.456 5002 
… 



Scenario 1 
Chart Response Time Per Cluster 

Completed 

SELECT host, trunc(date,’HOUR’), 
 min(response_time), max(response_time) 

FROM server_metrics 
WHERE date > CURRENT_DATE() – 1 
AND substr(host, 1, 3) IN (‘sf1’, ‘sf3, ‘sf7’) 
GROUP BY substr(host, 1, 3), trunc(date,’HOUR’) 
 



Phoenix Roadmap 

Completed 

l  Secondary Indexing 
l  Hash Joins 
l  Apache Drill integration 
l  Count distinct and percentile 
l  Derived tables 

l  SELECT * FROM (SELECT * FROM t) 
l  Cost-based query optimizer 
l  OLAP extensions 

l  WINDOW, PARTITION OVER, RANK 
l  Monitoring and management 
l  Transactions  



Thank you! 
Questions/comments? 


